Peer-Reviewed Papers:
(* indicates TZ as the corresponding author or one of the corresponding authors of a publication.)
York University:
99 M. Farmani, S. Lee, T. Zeng*, and C. H. Choi, "Chemoexcited Formation and Radiationless Decay Dynamics of Firefly Chromophore." J. Phys. Chem. Lett. 2024, in press.
98. L. Zhao, Y. Zhang, H. Chen, T. Zeng, and Z. Yang, "Two-Dimensional Lead Halide Perovskites with Spirocyclic Intercalating Cations." Chem. Mater. 2024, 36, 5788–5795.
97. S. Bao, R. Neil, T. Zeng*, and M. Nooijen, "Vibrational Electronic-Thermofield Coupled Cluster (VE-TFCC) Theory for Quantum Simulations of Vibronic Coupling Systems at Thermal Equilibrium." J. Chem. Theory Comput. 2024, 20, 5882–5900.
96. M. Puzhistky, B. Doan, E. Pradhan, T. Zeng, D. Fishlock, and A. Orellana, "Stability and Reactivity Trends of Alkylidene Dihydropyridines." Org. Biomol. Chem. 2024, 22, 4052-4056.
95. F. Rasheed, A. Nikolaev, A. Dehsi, T. Zeng, K. Yarkali, B. Guo, S. Komijani, and A. Orellana, "Mild and Catalytic Electrocyclizations of Heptatrienyl Anions." Chem. Sci. 2024, 15, 8163-8169.
94. L. Zhao, G. Yao, H. Chen, T. Zeng, and Z. Yang, "Incorporating Copper(I) Clusters into Lead Halide Perovskite through Mediation of Zwitterionic Linkers." Chem. Mater. 2024, 36, 3277–3284.
93. B. J. Chen, E. Pradhan, N. Marcel, and T. Zeng* "Adiabat-to-Diabat Angle in Seam Space: Renner-Teller-Type and Pseudo-Jahn-Teller-Type Problems." ChemPhysChem 2024, e202400130 (This is an invited article. This paper was also selected as the cover feature paper).
92. G. Yao, Z. Yang, and T. Zeng* "Survey of T1 and T2 Energies of Intramolecular Singlet Fission Chromophores." Photochem. 2024, 4, 14-23 (This is an invited article with a waiver of publication fee for this open-access journal.)
91. E. Pradhan and T. Zeng* "The Lack of Triplet Fusion for an Intramolecular Singlet Fission Chromophore: the Expected, the Unexpected, and a Reconciliation." J. Phys. Chem. lett. 2024, 15, 43-50.
90. J. Li, T. Zeng, Z. Qu, Y. Zhai, and H. Li "The Energy Transfer from Two Luteins to Chlorophylls in Light-Harvesting Complex II." Phys. Chem. Chem. Phys. 2024, 26, 1023-1029.
89. F. Rasheed, J. Shi, T. Zeng, Y. Krishna, D. Fishlock, and A. Orellana, "Soft Fluorination of 4-Alkylpyridines." Org. Lett. 2023, 25, 8628–8633
88. W. Li, G. Yao, Y. Zhang, L. Zhang, S. Hu, C. Liu, B. Liu, T. Zeng, and Z. Yang “Reduced-dimensional perovskites with dithioketal-containing intercalating cations for near-infrared light-emitting diodes.” Inorg. Chem. Front. 2023, 10, 6990-6997.
87. E. Pradhan and T. Zeng* “The unified Hamiltonian formalism of spin-orbit Jahn-Teller and pseudo-Jahn-Teller problems in all axial symmetries.” J. Chem. Theory Comput. 2023, 19, 7776–7786.
86. J. Li, T. Zeng, Y. Zhai, Z. Qu, and H. Li “Intermolecular resonance energy transfer between two lutein pigments in light-harvesting complex II studied by Frenkel exciton models.” Phys. Chem. Chem. Phys. 2023, 25, 24636-24642.
85. E. A. McKnight, R. Arora, E. Pradhan, Y. H. Fujisato, A. J. Ajayi, M. Lautens, T. Zeng*, and C. M. Le "BF3-Catalyzed Intramolecular Fluorocarbamoylation of Alkynes via Halide Recycling." J. Am. Chem. Soc. 2023, 145, 11012–11018.
84. E. Pradhan and T. Zeng* "Triplet Separation after the Fastest Intramolecular Singlet Fission in the Smallest Chromophore." J. Chem. Theory Comput. 2023, 19, 2092–2101.
83. N. Asok, B. A. Zondag, E. Pradhan, M. Odagwe, J. LeBlanc, J. C. Walsh, G. J. Bodwell, T. Zeng*, and T. Baumgartner "Exploring the Lewis Acidity and Reactivity of Neutral Pentacoordinate Dithienophospholes." Chem. Eur. J. 2023, 29, e202300173.
82. C. Komarov, W. Park, S. Lee, T. Zeng*, and C. H. Choi "Accurate Spin-Orbit Coupling and Intersystem Crossing by Relativistic Mixed-Reference Spin-Flip (MRSF)-TDDFT." J. Chem. Theory Comput. 2023, 19, 953-964.
81. E. Pradhan and T. Zeng* "Design of the Smallest Intramolecular Singlet Fission Chromophore with the Fastest Singlet Fission." J. Phys. Chem. Lett. 2022, 13, 11076–11085.
80. G. Yao, L. Zhao, T. Zeng, and Z. Yang "0D/2D mixed-dimensional perovskite constructed by thiol- and disulfide-containing ligands." Nanotechnology 2022, 33, 355701.
79. G. David, N. B. Amor, T. Zeng, N. Suaud, G. Trinquier, and J.-P. Malrieu "Difficulty of the evaluation of the barrier height of an open-shell transition state between closed-shell minima: the case of small C4n rings." J. Chem. Phys. 2022, 156, 224104.
78. E. Pradhan, G. Yao, Z. Yang, and T. Zeng* "Unified one-electron Hamiltonian formalism of spin-orbit Jahn-Teller and pseudo-Jahn-Teller problems in tetrahedral and octahedral symmetries." J. Chem. Phys. 2022, 156, 064104. (This is an invited article for the special issue of Nature of the Chemical Bond.)
77. D. James, E. Pradhan, and T. Zeng* "Design of singlet fission chromophores by the introduction of N-Oxyl fragments." J. Chem. Phys. 2022, 156, 034303. (This is an invited article for the special issue of Transport of Charge and Energy in Low-Dimensional Materials.)
76. D. James, E. Pradhan, S. Lee, C. H. Choi, and T. Zeng* "Dicarbonyl anthracene and phenanthrenes as singlet fission chromophores." Can. J. Chem. 2022, 100, 520-529. (This is an invited article for the University of Alberta Analytical Chemistry special issue.)
75. Z. Yuan, L. Zhao, E. Pradhan, M. Lai, T. Zeng, and Z. Yang “Post-synthetic crystalline transformation in two-dimensional perovskites via organothiol-based chemistry.” CCS Chem. 2022, 4, 855-86e.
74. J. Brown, E. Pradhan, and T. Zeng* "Unified one-electron Hamiltonian formalism of spin-orbit Jahn-Teller and pseudo-Jahn-Teller problems in axial symmetries." J. Chem. Phys. 2021, 155, 224108.
73. J. Brown, R. A. Lang, and T. Zeng* "Unified Hamiltonian formalism of Jahn-Teller and pseudo-Jahn-Teller problems in axial symmetries." J. Chem. Theory Comput. 2021, 17, 4392-4402.
72. J. N. Bentley, S. Simoes, E. Pradhan, T. Zeng, and C. B. Caputo "The synthesis, properties, and reactivity of Lewis acidic aminoboranes." Org. Biomol. Chem. 2021, 19, 4796-4802.
71. A. Nayanthara, J. Gaffen, E. Pradhan, T. Zeng*, and T. Baumgartner “Structure-reactivity studies on hypervalent square-pyramidal dithieno[3,2-b:2’,3’-d]phospholes.” Dalton Trans. 2021, 50, 2243-2252.
70. E. Pradhan, S. Lee, C. H. Choi, and T. Zeng* "Diboron- and Diaza-Doped Anthracenes and Phenanthrenes: Their Electronic Structures for Being Singlet Fission Chromophores." (ChemRxiv) J. Phys. Chem. A 2020, 124, 8159–8172. (This is an invited article for the Josef Michl Festschrift.)
69. E. Pradhan, J. N. Bentley, C. B. Caputo, and T. Zeng* "Designs of Singlet Fission Chromophores with a Diazadiborinine Framework." (ChemRxiv) ChemPhotoChem 2020, 4, 5279-5287. (This is an invited article for the Special Collection of Singlet Fission.)
68. Y. Kobayashi, K. F. Chang, S. M. Poullain, V. Scutelnic, T. Zeng, D. M. Neumark, and S. R. Leone "Coherent electronic-vibrational dynamics in deuterium bromide probed via attosecond transient absorption spectroscopy." Phys. Rev. A 2020, 101, 063414. (This work is selected for Editor's Suggestion.)
67. C. Ni, Y. Huang, T. Zeng, D. Chen, H. Chen, M. Wei, A. Johnston, A. H. Proppe, Z. Ning, E. H. Sargent, P. Hu, and Z. Yang “Thiophene cation intercalation improves bandedge integrity in reduced-dimensional perovskites.” Angew. Chem. Int. Ed. 2020, 59, 13977-13983.
66. J. N. Bentley, E. Pradhan, T. Zeng, and C. B. Caputo "Bis(pentafluorophenyl)phenothiazylborane – an intramolecular frustrated Lewis pair catalyst for stannane dehydrocoupling." Dalton Trans. 2020, 49, 16054-16058. (Hilighted as one of the 2020 Dalton Trans. HOT Articles)
65. R. A. Lang, R. J. Hickman, and T. Zeng* “VHEGEN: A Vibronic Hamiltonian Expansion Generator for Trigonal and Tetragonal Polyatomic Systems.” Comput. Phys. Comm. 2020, 247, 106946.
64. Y. Kobayashi, T. Zeng, D. Neumark, and S. Leone "NaI Revisited: Theoretical Investigation of Predissociation via Ultrafast XUV Transient Absorption Spectroscopy." J. Chem. Phys. 2019, 151, 203103.
63. T. Stuyver‡, B. Chen‡, T. Zeng‡*, P. Geerlings, F. De Proft, and R. Hoffmann “Do Diradicals Behave like Radicals?” Chem. Rev. 2019, 119, 11291-11351. (‡ Authors contribute equally.)
62. H. Li, X.-L. Zhang, T. Zeng, R. J. Le Roy, and P.-N. Roy “Suppression of Para-Hydrogen Superfluidity in a Doped Nanoscale Bose Fluid Mixture.” Phys. Rev. Lett. 2019, 123, 093001.
61. K. Wang and T. Zeng* “Hamiltonian Formalisms of Spin-Orbit Jahn-Teller and Pseudo-Jahn-Teller Problems in Trigonal and Tetragonal Symmetries.” Phys. Chem. Chem. Phys. 2019, 21, 18939-18957. (Highlighted as one of the 2019 PCCP HOT Articles)
Carleton University:
60. M. B. E. Griffiths, Z. S. Dubrawski, G. Bačić, J. D. Masuda, A. Japahuge, T. Zeng, and S. Barry "Controlling Thermal Stability and Volatility of Organogold(I) Compounds for Vapour Deposition with Complementary Ligand Design." Eur. J. Inorg. Chem. 2019, 4927-4938.
59. Y. Kobayashi, K. F. Chang, T. Zeng, D. M. Neumark, and S. R. Leone “Direct Mapping of Curve-Crossing Dynamics in IBr by Attosecond Transient Absorption Spectroscopy.” Science 2019, 365, 79-83. (Introduced in news article “What happens when you explode a chemical bond?”)
58. A. Japahuge, S. Lee, C. H. Choi, and T. Zeng* “Design of Singlet Fission Chromophores with Cyclic (Alkyl)(Amino) Carbene Building Blocks.” J. Chem. Phys. 2019, 150, 234306. (This is an invited article for the special issue of Singlet Fission.)
57. I. Seidu‡, P. Goel‡, X.-G. Wang, B. Chen, X.-B. Wang, and T. Zeng* “Vibronic Interaction in CO3– photo-detachment: Jahn-Teller effects beyond structural distortion and general formalisms for vibronic Hamiltonians in trigonal symmetries.” Phys. Chem. Chem. Phys. 2019, 21, 8679-8690. (‡ Authors contribute equally.)
56. Y. Kobayashi, T. Zeng*, D. M. Neumark, and S. R. Leone “Ab Initio Investigation of Br-3d Core-Excited States in HBr XUV Probing of Photochemical Dynamics.” Struct. Dynam. 2019, 6, 014101.
55. M. Rahm, T. Zeng, and R. Hoffmann “Electronegativity Seen as the Ground State Average Valence Electron Binding Energy.” J. Am. Chem. Soc. 2019, 141, 342-351. (Introduced in two news articles “New scale for electronegativity rewrites the chemistry textbook” and “Chemists develop new scale for electronegativity”)
54. T. Stuyver, T. Zeng, Y. Tsuji, P. Geerlings, and F. De Proft “Diradical Character as a Guiding Principle for the Insightful Design of Molecular Nanowires with an Increasing Conductance with Length.” Nano Lett. 2018, 18, 7298-7304.
53. R. A. Lang‡, A. Japahuge, and T. Zeng* “General formalism of vibronic Hamiltonians for tetrahedral and octahedral systems: problems that involve A-type states and a-type vibrations.” Chem. Phys. 2018, 515, 36-45 (‡Rob was our 4908 undergraduate researchers from September 2017 to April 2018. This is an invited article for the Wolfgang Domcke 70th Birthday Festschrift.).
52. T. Zeng*, S. Mellerup, D.-T. Yang, X. Wang, S. Wang, and K. Stamplecoskie “Identifying (BN)2-pyrene as a new class of singlet fission chromophores: significance of azaborine substitution.” J. Phys. Chem. Lett. 2018, 9, 2919-2927.
51. R. J. Hickman‡, R. A. Lang‡, and T. Zeng* “General formalism for vibronic Hamiltonians in tetragonal symmetry and beyond.” Phys. Chem. Chem. Phys. 2018, 20, 12312-12322 (‡Riley and Rob were our 4908 undergraduate researchers from September 2017 to April 2018.)
50. R. Leung, C. Venus‡, T. Zeng, and A. Tsopmo “Structure-function relationships of hydroxyl radical scavenging and chromium-VI reducing cysteine-tripeptides derived from rye secalin.” Food Chem.2018, 254, 165-169. (‡ Colin was our 4908 undergraduate researcher from September 2016 to April 2017.)
49. S. Stefanoski, G. Finkelstein, M. Ward, T. Zeng, K. Wei, E. Bullock, C. Beavers, H. Liu, G. Nolas, and T. Strobel “Zintl ions within framework channels: the complex structure and low-temperature transport properties of Na4Ge13.” Inorg. Chem. 2018, 57, 2002-2012.
48. A. Japahuge and T. Zeng* “Theoretical studies of singlet fission: searching for materials and exploring mechanisms (review).” ChemPlusChem 2018, 83, 146-182. (This is an invited article for the special issue of New Materials and Approaches for Advanced Optoelectronics. It is selected as a Very Important Paper. It is among top 10% most downloaded papers of the journal.)
47. T. Stuyver, T. Zeng, Y. Tsuji, S. Fias, P. Geerlings, and F. De Proft “Captodative substitution: a strategy for enhancing the conductivity of molecular electronic devices.” J. Phys. Chem. C 2018, 133, 3194-3200.
46. T. Zeng*, R. J. Hickman, A. Kadri, and I. Seidu “General formalism of vibronic Hamiltonians for tetrahedral and octahedral systems: problems that involve T, E states and t, e vibrations.” J. Chem. Theory Comput. 2017, 13, 5004-5018.
45. A. M. Rawashdeh, P. C. Parambil, T. Zeng, and R. Hoffmann “An iodabenzene story.” J. Am. Chem. Soc. 2017, 139, 7124-7129. (Introduced in a news article on chemistryworld.com, “Hypothetical molecule might take wing in bird geometry“)
44. T. Zeng* “A diabatization protocol that includes spin-orbit coupling.” J. Chem. Phys. 2017, 146, 144103.
43. T. Zeng* and I. Seidu “Revisiting the (E + A)×(e + a) problems of polyatomic systems with trigonal symmetry: general expansions of their vibronic Hamiltonians.” Phys. Chem. Chem. Phys. 2017, 19, 11098-11110. (Highlighted as one of the 2017 PCCP HOT Articles)
42. T. Zeng* “Through-Linker Intramolecular Singlet Fission: General Mechanism and Designing Small Chromophores.” J. Phys. Chem. Lett. 2016, 7, 4405-4412.
41. L. Hajjar‡, R. G. Hicks, and T. Zeng* “A computational study of the protoisomerization of indigo and its imine derivatives.” J. Phys. Chem. A 2016, 120, 7569-7576. (‡ Laurence was our 4908 undergraduate researcher from August 2015 to July 2016. This is an invited article for the special issue “Mark S. Gordon Festschrift”.)
40. T. Zeng* and Prateek Goel “Design of small intramolecular singlet fission chromophores: an azaborine candidate and general small size effects.” J. Phys. Chem. Lett. 2016, 7, 1351-1358. (We thank Shaohong Li (University of Minnesota) for discussion.)
Cornell University:
39. R. Hoffmann, S. Alvarez, C. Mealli, A. Falceto, T. J. Cahill III, T. Zeng, and G. Manca “From widely accepted concepts in coordination chemistry to inverted ligand fields.” Chem. Rev. 2016, 116, 8173-8192.
38. E. G. Fuemmeler, S. N. Sanders, A. B. Pun, E. Kumarasamy, T. Zeng, K. Miyata, M. L. Steigerwald, X.-Y. Zhu, M. Y. Sfeir, L. M. Campos, and N. Ananth “A direct mechanism of ultrafast intramolecular singlet fission in pentacene dimers.” ACS Central Science 2016, 2, 316-324.
37. T. Zeng, R. Hoffmann, R. Nesper, N. W. Ashcroft, T. A. Strobel, and D. M. Proserpio “Li-filled B-substituted carbon clathrates.” J. Am. Chem. Soc. 2015, 137, 12639-12652.
36. T. Zeng, D. Danovich, S. Shaik, N. Ananth, and R. Hoffmann “Tuning the ground state symmetry of acetylene radicals.” ACS Central Science 2015, 1, 270-278.
35. T. Zeng, K. M. Lancaster, N. Ananth, and R. Hoffmann “Anomalous orbital admixture in ammine complexes.” J. Organomet. Chem. 2015, 792, 6-12.
34. T. Zeng, H. Wang, Y. Lu, Y. Xie, H. Wang, H. F. Schaefer, N. Ananth, and R. Hoffmann “Tuning spin-states of carbynes and silylynes: a long jump with one leg.” J. Am. Chem. Soc. 2014, 136, 13388-13398.
33. T. Zeng*, N. Ananth, and R. Hoffmann “Seeking small molecules for singlet fission: a heteroatom substitution strategy.” J. Am. Chem. Soc. 2014, 136, 12638-12647. (* corresponding author)
32. T. Zeng, R. Hoffmann, and N. Ananth “The low-lying electronic states of pentacene and their roles in singlet fission.” J. Am. Chem. Soc. 2014, 136, 5755-5764 (JACS Spotlights).
University of Waterloo:
31. T. Zeng, N. Blinov, G. Guillon, H. Li, K. P. Bishop, and P.-N. Roy “MoRIBS-PIMC: a program to simulate molecular rotors in bosonic solvents using path-integral Monte Carlo.” Comput. Phys. Commun. 2016, 204, 170-188.
30. T. Zeng, H. Li, and P.-N. Roy “Potential generation and path-integral Monte Carlo in Study of Microscopic Superfluidity.” Int. J. Quantum Chem. 2014, 115, 535-540.
29. Y.-T. Ma, T. Zeng, and H. Li “Analytical Morse/long-range model potential and predicted infrared and microwave spectra for a symmetric top-atom dimer: a case study of a case study of CH3F-He.” J. Chem. Phys. 2014, 140, 214309, 13 pages.
28. T. Zeng and P.-N. Roy “Microscopic molecular superfluid response: theory and simulations.” Rep. Prog. Phys. 2014, 77, 046601, 40 pages.
27. G. Guillon, T. Zeng, and P.-N. Roy “A new post-quantization constrained propagator for rigid tops for use in path integral quantum simulations.” J. Chem. Phys. 2013, 139, 184115, 10 pages.
26. S. Constable, M. Schmidt, C. Ing, T. Zeng, and P.-N. Roy “Langevin equation path integral ground state.” J. Phys. Chem. A 2013, 117, 7461-7467.
25. G. Guillon, T. Zeng, and P.-N. Roy “On the origin and convergence of a ‘Rattle and Shake’ propagator for path integral quantum simulations.” J. Chem. Phys. 2013, 138, 184101, 11 pages.
24. Y. Tritzant-Martinez, T. Zeng, A. Broom, E. Meiering, R. J. Le Roy, and P.-N. Roy “On the analytical representation of free energy profiles with a Morse/Long-Range model: application to the water dimer.” J. Chem. Phys. 2013, 138, 234103, 12 pages.
23. T. Zeng, G. Guillon, and P.-N. Roy “Probing the superfluid response of para-hydrogen with a sulfur dioxide dopant.” J. Phys. Chem. Lett. 2013, 4, 2391-2396.
22. T. Zeng, H. Li, and P.-N. Roy “Simulating asymmetric top impurities in superfluid clusters: a para-water dopant in para-hydrogen.” J. Phys. Chem. Lett. 2013, 4, 18-22.
21. C. Ing, J. Yang, K. Hinsen, T. Zeng, H. Li, and P.-N. Roy “A path-integral Langevin equation treatment of low-temperature doped helium clusters.” J. Chem. Phys. 2012, 136, 224309, 12 pages.
20. T. Zeng, H. Li, R. J. Le Roy, and P.-N. Roy “Adiabatic-hindered-rotor treatment for para-H2 and H2O system.” J. Chem. Phys. 2011, 135, 094304, 15 pages.
University of Alberta:
19. T. Zeng, D. G. Fedorov, M. W. Schmidt, and M. Klobukowski “Natural spinors reveal how the spin-orbit coupling affects the Jahn-Teller distortions in the hexafluorotungstate(V) anion.” J. Chem. Theory Comput. 2012, 8, 3061-3071.
18. H. Mori, T. Zeng, and M. Klobukowski “Assessment of chemical core potentials for the computation on enthalpies of formation of transition-metal complexes.” Chem. Phys. Lett. 2012, 521, 150-156.
17. T. Zeng, D. G. Fedorov, M. W. Schmidt, and M. Klobukowski “Effects of spin-orbit coupling on covalent bonding and the Jahn-Teller effect are revealed with the natural language of spinors.” J. Chem. Theory Comput. 2011, 7, 2864-2875.
16. T. Zeng, D. G. Fedorov, M. W. Schmidt, and M. Klobukowski “Two-component natural spinors from two-step spin-orbit coupled wave functions.” J. Chem. Phys. 2011, 134, 214107, 9 pages.
15. T. Zeng, D. G. Fedorov, and M. Klobukowski “Performance of dynamically weighted MCSCF and spin-orbit coupling calculations of diatomic molecules of Group 14 elements.” J. Chem. Phys. 2011, 134, 024108, 11 pages.
14. T. Zeng, D. G. Fedorov, and M. Klobukowski “Model core potentials of p-block elements generated considering the Douglas-Kroll relativistic effects, suitable for accurate spin-orbit coupling calculations.” J. Chem. Phys. 2010, 133, 114107, 11 pages.
13. T. Zeng, D. G. Fedorov, and M. Klobukowski “Multireference study of spin-orbit coupling in the hydrides of the 6p-block elements using the model core potential method.” J. Chem. Phys. 2010, 132, 074102, 15 pages.
12. T. Zeng, D. G. Fedorov, and M. Klobukowski “Model core potentials for studies of scalar-relativistic effects and spin-orbit coupling at Douglas–Kroll level. I. Theory and applications to Pb and Bi.” J. Chem. Phys. 2009, 131, 124109, 17 pages.
11. T. Zeng, H. Mori, E. Miyoshi, and M. Klobukowski “Calibration of new model core potentials for main group elements.” Int. J. Quantum Chem. 2009, 109, 3235-3245.
10. T. Zeng and M. Klobukowski “New model core potentials for gold.” J. Chem. Phys. 2009, 130, 204107, 12 pages.
9. T. Zeng and M. Klobukowski “Relativistic model core potential study on the Au+Xe system.” J. Phys. Chem. A 2008, 112, 5236-5242.
8. T. Zeng, Z. Jamshidi, H. Mori, E. Miyoshi, and M. Klobukowski “Electron affinities of heavier phosphoryl and thiophosphoryl halides APX3 (A = O, S and X = Br, I).” J. Comput. Chem. 2007, 28, 2027-2033.
Institute of Coal Chemistry, Chinese Academy of Sciences
7. X.-D. Wen, T. Zeng, and H. Jiao ‘Reply to “Comment on ‘Density functional theory study of triangular molybdenum sulfide nanocluster and CO adsorption on it’” J. Phys. Chem. B 2006, 110, 14004-14005.
6. X.-D. Wen, T. Zeng, B.-T. Teng, F.-Q. Zhang, Y.-W. Li, and H. Jiao “Hydrogen adsorption on a Mo27S54cluster: A density functional theory study.” J. Mol. Catal. A: Chemical 2006, 249, 191-200.
5. C.-F. Huo, T. Zeng, Y.-W. Li, M. Beller, and H. Jiao “Switching end-on into side-on CN coordination: A computational approach.” Organometallics 2005, 24, 6037-6042.
4. T. Zeng, X.-D. Wen, Y.-W. Li, and H. Jiao “Removal of surface sulfur from MoSx cluster under CO adsorption.” J. Mol. Catal. A: Chemical 2005, 241, 219-226.
3. X.-D. Wen, T. Zeng, Y.-W. Li, J. Wang, and H. Jiao “Surface structure and stability of MoSx model clusters.” J. Phys. Chem. B 2005, 109, 18491-18499.
2. T. Zeng, X.-D. Wen, Y.-W. Li, and H. Jiao “Density functional theory study of triangular molybdenum sulphide nanocluster and CO adsorption on it.” J. Phys. Chem. B 2005, 109, 13704-13710.
1. T. Zeng, X.-D. Wen, G.-S. Wu, Y.-W. Li, and H. Jiao “Density functional theory study of CO adsorption on molybdenum sulfide.” J. Phys. Chem. B 2005, 109, 2846-2854.
Peer-Reviewed Book Chapters:
2. T. Zeng and M. Klobukowski (2011) “Model core potential in the first decade of the XXI century.” in Practical Aspects of Computational Chemistry II, An Overview of the Last Two Decades and Current Trends, J. Leszczynski and M. K. Shukla (Eds.), Springer, Chapter 8, 209-254.
1. T. Zeng and M. Klobukowski (2011) “Guide to Programs for Non-relativistic Quantum Chemistry Calculations.” in Handbook of Computational Chemistry, J. Leszczynski (Ed.) Springer, Chapter 17, 611-630.